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Abstract
The performance of the Ericsson refrigeration cycle using an ideal Fermi gas
as the working substance, which is simply referred to as the Fermi Ericsson
refrigeration cycle, is examined, based on the equation of state of an ideal
Fermi gas. The inherent regenerative losses and the coefficient of performance
(COP) of the cycle are calculated. Three special cases are discussed in detail.
It is found that under the conditions of low and high temperatures, the COP of
the cycle is only a function of temperature, while under other conditions, the
COP of the cycle is not only a function of temperature, but also is dependent on
the pressures and other parameters. The results obtained here may reveal the
general performance characteristics of the Fermi Ericsson refrigeration cycle.

PACS numbers: 05.70.−a, 05.90.+m

1. Introduction

The Ericsson refrigeration cycle is one of the important refrigeration cycle modes with
regeneration. According to the theory of classical thermodynamics, the Ericsson refrigeration
cycle using an ideal classical gas as the working substance may possess the condition of perfect
regeneration through the use of a reversible regenerator. Its coefficient of performance (COP)
is equal to that of a reversible Carnot refrigeration cycle. However, when the gas temperature
is low enough or density is high enough, the ideal gas will deviate from classical gas behaviour
and quantum degeneracy of the gas will become important [1, 2]. Thus, when the working
substance is a quantum gas, the Ericsson refrigeration cycle will have some new performance
characteristics to be researched.

0305-4470/02/387995+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK 7995

http://stacks.iop.org/ja/35/7995


7996 J Chen et al

Unlike a reversible Carnot refrigeration cycle, the performance of the Ericsson
refrigeration cycle is dependent on the properties of the working substance [3–5]. The working
substances of a quantum Ericsson cycle may be ideal quantum gases, harmonic oscillator
systems, spin systems, and so on. For different working substances, the performance of the
cycle will be different. To our knowledge, the performance of the Ericsson refrigeration cycle
using an ideal Fermi gas as the working substance has not been investigated, although the
Ericsson power cycles working with quantum gases have been examined [2].

In this paper, the thermodynamic properties of an ideal Fermi gas in some important
processes are analysed, based on the equation of state of an ideal Fermi gas. Using the
properties, the inherent regenerative losses of the Fermi Ericsson refrigeration cycle are
calculated. The influence of the regenerative losses on the COP is analysed. Some special
cases are discussed in detail.

2. Thermodynamic properties of an ideal Fermi gas

According to quantum statistics, the expressions of the pressure, number density, internal
energy and entropy for an ideal Fermi gas are given by [6]

P = gkT

λ3
f5/2(z) = nkT F(z) (1)

n = N

V
= g

λ3
f3/2(z) (2)

U = 3
2NkT F(z) (3)

and

S = Nk
[

5
2F(z) − ln z

]
(4)

respectively, where g is a weight factor that arises from the ‘internal structure’ of the particles
(such as spin),

λ = h/(2πmkT )1/2 (5)

where λ, m and N are, respectively, the mean thermal wavelength, rest mass and total number
of the particles, V, z = exp(µ/kT ) and µ are, respectively, the volume, fugacity and chemical
potential of the gas, h is the Planck constant, k is the Boltzmann constant, T is the gas
temperature,

fn(z) = 1

�(n)

∫ ∞

0

xn−1 dx

z−1 ex + 1
(6)

is called the Fermi function, �(n) is the gamma function, and

F(z) = f5/2(z)

f3/2(z)
(7)

is called the corrected factor. When F(z) = 1, an ideal Fermi gas becomes an ideal
classical gas.

Using equations (1)–(3), the heat capacity at constant pressure is given by

CP = 5

2
Nk

d

dT
[T F(T , P )] (8)

where F(T , P ) is a function of temperature and pressure. From equations (4) and (8), one
can find that the amounts of heat exchange in an isothermal and an isobaric process are,
respectively, determined by

Qif = T (Sf − Si) = NkT
{

5
2 [F(zf ) − F(zi)] − (ln zf − ln zi)

}
(9)
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Figure 1. The entropy–temperature diagram of a Fermi Ericsson refrigeration cycle.

and

QP
if =

∫ f

i

CP (T , P ) dT = 5

2
Nk[Tf F (Tf , P ) − TiF (Ti, P )] (10)

where the subscripts i and f refer to the initial and final states.
With the help of equations (9) and (10), we can analyse the performance characteristics

of a quantum Ericsson refrigeration cycle using an ideal Fermi gas as the working substance.

3. A Fermi Ericsson refrigeration cycle

When an ideal gas is used as the working substance,an Ericsson refrigeration cycle is composed
of two isothermal and two isobaric processes. Its entropy–temperature diagram is shown in
figure 1, where QL and QH are the amounts of heat exchange between the working substance
and the heat reservoirs at temperatures TL and TH during the two isothermal processes, Qbc

and Qda are the amounts of heat exchange between the working substance and the regenerator
during two isobaric processes, and PL and PH are the low and high pressures. All heats QL,
QH, Qbc and Qda are positive. In order to improve the performance of the cycle, a regenerator is
often applied in two isobaric processes. When Qbc is not equal to Qda, the regenerative losses
will be inevitable in spite of the use of a regenerator. For the sake of convenience, the Ericsson
refrigeration cycle mentioned above is simply referred to as the Fermi Ericsson refrigeration
cycle.

Using equations (9) and (10), the amounts of heat exchange in the various processes of a
Fermi Ericsson refrigeration cycle may be expressed as

QL = 5
2NkTL[F(zd) − F(zc)] − NkTL(ln zd − ln zc) (11)

QH = 5
2NkTH [F(za) − F(zb)] − NkTH (ln za − ln zb) (12)

Qda =
∫ TH

TL

CP (T , PL) dT = 5

2
Nk[TH F(za) − TLF(zd)] (13)
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Figure 2. The function T F(T ,P ) versus temperature curves for two different pressures. The
square curve is obtained for a constant high pressure PH while the triangle curve is obtained for a
constant low pressure PL.

and

Qbc =
∫ TH

TL

CP (T , PH ) dT = 5

2
Nk[TH F(zb) − TLF(zc)] (14)

respectively, where za, zb, zc and zd are the fugacities of the gas in the states a, b, c and d
shown in figure 1. Using equations (11)–(14), we can obtain the regenerative losses and the
input work per cycle as

�Q = Qbc − Qda = 5
2Nk{TH [F(zb) − F(za)] + TL[F(zd) − F(zc)]} (15)

and

W = QH − QL + Qbc − Qda = NkTH (ln zb − ln za) + NkTL(ln zd − ln zc). (16)

In order to expound the characteristics of two regenerative processes in the cycle, we plot
the function T F(T , P ) versus temperature T curves for two different pressures, as shown in
figure 2. Using equation (9) and comparing the slopes of the curves in figure 2, we can obtain
the following relation:

CP (T , PH ) < CP (T , PL). (17)

Thus, it is seen from equations (13)–(15) and (17) that�Q = Qbc −Qda < 0. This implies the
fact that the amount of heat exchange Qbc transferred into the regenerator in one regenerative
process is smaller than that of heat exchange Qda transferred from the regenerator in the other
regenerative process. The inadequate heat in the regenerator per cycle can only be compensated
from the hot reservoir in a timely manner, so that the state of the working substance returns to
the original state after each cycle. If not, the temperature of the regenerator would be changed
such that the regenerator would not be operated normally. Although there are regenerative
losses, the refrigeration heat QL per cycle is unvarying. From equations (11) and (16), we
obtain the COP of a Fermi Ericsson refrigeration cycle as

ε = QL

W
=

5
2TL[F(zd) − F(zc)] − TL(ln zd − ln zc)

TH(ln zb − ln za) + TL(ln zd − ln zc)
. (18)

Using equations (17) and (18), we can analyse the regenerative characteristics and the COP of
a quantum Ericsson refrigeration cycle using an ideal Fermi gas as the working substance.
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4. Three special cases

Case 1. Under the low-temperature and high-density condition (i.e. the condition of strong gas
degeneracy), the natural logarithm of the fugacity and the corrected factor may be expanded
to the first approximation (a detailed derivation is given in appendix A), i.e.

ln z = TF (P )

T
− π2

4

T

TF (P )
(19)

and

F(T , P ) = 2TF (P )

5T
+

π2T

10TF(P )
(20)

where TF (P ) = AP 2/5 is the Fermi temperature and A = (15π2h̄3)2/5/(2km3/5). By
substituting equations (19) and (20) into equations (15) and (18), the regenerative losses
and the COP may be, respectively, simplified as

�Q = Qbc − Qda = π2

4A
Nk

(
T 2

H − T 2
L

) (
P

−2/5
H − P

−2/5
L

)
< 0 (21)

and

ε = QL

W
= TL

TH − TL

2TL

TH + TL

< εc (22)

where εc = TL/(TH − TL) is the COP of a reversible Carnot refrigeration cycle. In such a
case, the COP is only a function of temperature and independent of any other parameters.
It is always less than εc and decreases quickly as the ratio of the temperatures of two heat
reservoirs TH /TL increases.

Case 2. Under the high-temperature and low-density condition (i.e. the condition of weak
gas degeneracy), the fugacity and the corrected factor may be derived to the first approximation
(a detailed derivation is given in appendix B), i.e.

z = 4
√

2BP/T 5/2(1 + BP/T 5/2) (23)

and

F(T , P ) = 1 + BP/T 5/2 (24)

where B = (2πh̄2/m)3/2/(4
√

2gk5/2). By substituting equations (23) and (24) into
equations (15) and (18), the regenerative losses and the COP may be, respectively, simplified as

�Q = 5
2NkB(PH − PL)

(
1
/
T

3/2
H − 1

/
T

3/2
L

)
< 0 (25)

and

ε =
TL ln(PH /PL) − 3

2

(
B

/
T

3/2
L

)
(PH − PL)

(TH − TL) ln(PH /PL) + B(PH − PL)
[(

1
/
T

3/2
H

)
−

(
1
/

T
3/2
L

)] < εc. (26)

When 3He gas is chosen as the ideal Fermi gas, equation (26) may be used to generate the
curves of the ratio of the COPs, ε/εc, varying with the temperature ratio, τ = TH /TL, for
three different pressure ratios, rP = PH /PL, as shown in figure 3. In this figure, TH = 177 K
and PH = 107 Pa are given, τ only depends on TL, and rP varies with PL. Under the condition
of TH > TL � TF (PH ) = 17.18 K, the working gas is always in the classical gas state
throughout the cycle. Therefore, the COP of an Ericsson refrigeration cycle is approximately
equal to that of a Carnot refrigeration cycle.
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Figure 3. The curves of the ratio of the COPs varying with the temperature ratio for three different
pressure ratios. The pressure PH = 107 Pa and temperature TH = 177 K are adopted.
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Figure 4. The curves of the ratio of the COPs varying with the pressure ratio. The solid curve
is obtained for a constant high pressure PH while the dashed curve is obtained for constant low
pressure PL. The temperatures TH = 177 K and TL = 17.18 K are adopted.

When the temperature is high enough, 3
2

(
B

/
T

3/2
L

)
(PH − PL)/ ln(PH /PL) � 1 and

B(PH − PL)
[(

1
/
T

3/2
H

) − (
1
/
T

3/2
L

)]/
ln(PH /PL) � 1. Equation (26) is simplified as

ε = TL

TH − TL

= εc. (27)

In this case, an ideal Fermi gas becomes an ideal classical gas. The Ericsson refrigeration
cycle may possess the condition of perfect regeneration so that its COP may attain that of a
reversible Carnot refrigeration cycle.

Using equation (26), one can also plot the curves of the ratio of the COPs varying with
the pressure ratio, as shown in figure 4, where the temperatures of the heat reservoirs are given
as TL = 17.18 K and TH = 177 K. Solid and dashed curves correspond to the cases of a
constant PH value (PH = 107 Pa) and a constant PL value (PL = 106 Pa), respectively. For a
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Figure 5. The curves of the ratio of the COPs varying with the temperature ratio for three different
pressure ratios. The pressure PL = 106 Pa and temperature TL = 1 K are adopted.

constant PH value, the coefficient of performance increases with the increase of rP , while for a
constant PL value, the coefficient of performance decreases with the increase of rP . This
implies that the smaller the value of PL, the larger the COP.

Case 3. Under the condition of TH � TF (PH ) and TL � TF (PL), the fugacity and
corrected factor may be, respectively, expressed as

z(TH , P ) = 4
√

2BP
/
T

5/2
H

(
1 + BP

/
T

5/2
H

)
(28)

F(TH , P ) = 1 + BP
/

T
5/2
H (29)

ln z(TL, P ) = AP 2/5

TL

− π2

4

TL

AP 2/5
(30)

and

F(TL, P ) = 2AP 2/5

5TL

+
π2TL

10AP 2/5
. (31)

Substituting equations (28) and (31) into equation (15) and (18), the regenerative losses and
the COP may be, respectively, given by

�Q = NkA
(
P

2/5
L − P

2/5
H

)
< 0 (32)

and

ε =
(π2/2A)T 2

L

(
P

−2/5
L − P

−2/5
H

)
TH ln(PH /PL) − A

(
P

2/5
H − P

2/5
L

) (33)

which may be used to generate some performance characteristic curves, as shown in figures 5
and 6.

Figure 5 shows the curves of the ratio of the COPs varying with the temperature ratio for
three different pressure ratios. In the figure, the value of TL is given as 1 K and τ depends
on TH only. Similarly, the value of PL is given as 106 Pa and the different values of rP
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Figure 6. The curves of the ratio of the COPs varying with the pressure ratio. The solid curve
is obtained for a constant high pressure PH while the dashed curve is obtained for a constant low
pressure PL. The temperatures TH = 177 K and TL = 1 K are adopted.

correspond to different PH values. Under the conditions of TH � TF (PH ) = 17.18 K and
TL � TF (PL) = 6.97 K, the working gas is in the classical gas state for high isothermal
processes while it is in the degeneracy state for low isothermal processes. For given values of
PL and TL, the COP decreases with the increase of τ for different pressure ratios.

Figure 6 shows the curves of the ratio of the COPs varying with the pressure ratio. The
temperatures of the heat reservoirs in the cycle are given as TL = 1 K and TH = 177 K.
Solid and dashed curves correspond to the cases of a constant PH value and a constant PL

value, respectively. For a constant PH value, the coefficient of performance increases with
increasing rP , while for a constant PL value, the COP decreases with increasing rP . Obviously,
the situations in figure 6 are similar to those in figure 4.

5. Conclusions

We have analysed the performance of the Ericsson refrigeration cycle using an ideal Fermi gas
as the working substance. It is found that because there are inherent regenerative losses, the
Fermi Ericsson refrigeration cycle may not possess the condition of perfect regeneration. The
influence of the inherent regenerative losses on the COP of the cycle is further investigated.
The COP under different conditions is derived analytically. In general, the COP is not only a
function of temperature, but also is dependent on other parameters. Only if the gas temperature
is very low or high enough can the COP be a function of temperature but independent of other
parameters. The results obtained may reveal the general performance characteristics of the
Fermi Ericsson refrigeration cycle.

Finally, it should be pointed out that we analyse the performance of a Fermi Ericsson
refrigeration cycle only in the scope of classical thermodynamics and statistical physics. For
a real Ericsson refrigerator using an ideal Fermi gas as the working substance, one has to
consider the influence of not only the regenerative losses due to quantum degeneracy of the
gas, but also other main irreversible factors often existing in refrigerators. These issues are
beyond the scope of this paper and will be further researched.
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Appendix A

Under the low-temperature and high-density condition, the Fermi function fn(z) can be
expressed [6] as the asymptotic expansions in powers of the quantity (ln z)−1, i.e.

f5/2(z) = 8

15
√

π
(ln z)5/2

[
1 +

5π2

8
(ln z)−2 + · · ·

]
(A1)

f3/2(z) = 4

3
√

π
(ln z)3/2

[
1 +

π2

8
(ln z)−2 + · · ·

]
. (A2)

Using equations (A1) and (A2), we can obtain the expression of the corrected factor as

F(z) = f5/2(z)

f3/2(z)
= 2

5
ln(z)

1 + 5
8π2(ln z)−2 + · · ·

1 + 1
8π2(ln z)−2 + · · ·

= 2

5
ln(z)

[
1 +

π2

2
(ln z)−2 + · · ·

]
. (A3)

Substituting equation (A1) into equation (1), one has

P = 8πg

15

(
2m

h2

)3/2

(kT ln z)5/2

[
1 +

5π2

8
(ln z)−2 + · · ·

]
. (A4)

Using µ = kT ln z, we can rewrite equation (A4) as

µ = µF

[
1 − π2

4

(
kT

µ

)2

+ · · ·
]

(A5)

where

µF =
(

15P

8πg

)2/5 (
h2

2m

)3/5

(A6)

is called the Fermi energy. From equation (A5), we obtain

ln z = µF

kT

[
1 − π2

4

(
kT

µF

)2
]

. (A7)

Substituting equation (A7) into equation (A3), one has

F(T , P ) = 2

5

µF

kT
+

π2

10

kT

µF

= 2

5

TF

T
+

π2

10

T

TF

(A8)

where TF (P ) = µF /k = AP 2/5 is called the Fermi temperature.
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Appendix B

Under the high-temperature and low-density condition, the Fermi function fn(z) can be
expressed [6] as the asymptotic expansion in powers of the quantity (z),

f5/2(z) = z − z2

25/2
+

z3

35/2
− · · · (B1)

f3/2(z) = z − z2

23/2
+

z3

33/2
− · · · . (B2)

Using equations (B1) and (B2), we can obtain the expression of the corrected factor as

F(z) = f5/2(z)

f3/2(z)
= 1 +

1

4
√

2
z + · · · . (B3)

From equations (1) and (B1), we obtain

y = f5/2(z) = z − z2/25/2 + z3/35/2 − · · · (B4)

where y = λ3P/gkT .
Now, let

z = a1y + a2y
2 + · · · . (B5)

Substituting equation (B5) into (B4) and comparing the coefficients of the same powers of y,
one obtains a1 = 1 and a2 = 1/25/2. Substituting these coefficients and y into equation (B4),
one has

z = λ3P

gkT
+

1

25/2

(
λ3P

gkT

)2

+ · · · . (B6)

Substituting equation (B6) into equation (B3), we can obtain the first approximation of the
corrected factor as

F(T , P ) = 1 + BP/T 5/2 (B7)

where B = (2πh̄2/m)3/2/(4
√

2gk5/2). Thus, the first approximation of equation (B6) is given
by

z(T , P ) = 4
√

2BP/T 5/2(1 + BP/T 5/2). (B8)
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